Source code for vgslify.utils.model_to_spec

try:
    import tensorflow as tf
except ImportError:
    tf = None
try:
    from torch import nn
except ImportError:
    nn = None


[docs] def model_to_spec(model) -> str: """ Convert a deep learning model (TensorFlow or PyTorch) to a VGSL spec string. Parameters ---------- model : Model The deep learning model to be converted. Can be a TensorFlow model (tf.keras.models.Model) or a PyTorch model (torch.nn.Module). Returns ------- str VGSL spec string. Raises ------ ValueError If the model is not supported or cannot be parsed. Examples -------- >>> from vgslify.utils import model_to_spec >>> import tensorflow as tf >>> model = tf.keras.models.load_model("path_to_model.h5") >>> spec_string = model_to_spec(model) >>> print(spec_string) """ # Check if it's a TensorFlow model if tf and isinstance(model, tf.keras.Model): from vgslify.parsers.tf_parser import TensorFlowModelParser parser = TensorFlowModelParser() # Check if it's a PyTorch model if nn and isinstance(model, nn.Module): from vgslify.parsers.torch_parser import TorchModelParser parser = TorchModelParser() # Raise an error if the model is not recognized if not parser: raise ValueError( f"Unsupported model type: {type(model).__name__}. Expected TensorFlow " "or PyTorch model.") return parser.parse_model(model)